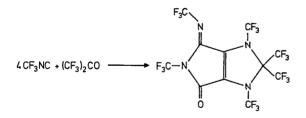
I₃₇


TRIFLUORMETHYLISOCYANIDE, REACTIVITY AND LIGAND BEHAVIOUR

Dieter Lentz

Institut für Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstr. 34-36, D-1000 Berlin 33 (F.R.G.)

Spectroscopic data of $\text{Cp*Mn(CO)}_2(\text{CNCF}_3)$ and $\text{Cp*Mn(CNCF}_3)_3$ - compared to $\text{Cp*Mn(CO)}_2\text{L}$ (L=CO, CS, CNCH_3)- show that the trifluoromethylisocyanide ligand is an extremely strong \mathcal{N} -accepting ligand, which stabilizes low oxidation states of the metal atom. Nevertheless $\text{Cp*Co(CNCF}_3)_2$ can be oxidized by iodine to yield $\text{Cp*Co(CNCF}_3)\text{I}_2 \cdot \text{I}_2$, which according to the crystal structure analyses contains I_4 -units bridging the $\text{Cp*Co(CNCF}_3)$ -fragments.

In the reaction of CF_3NC with hexafluoroacetone a tetrahydropyrrolo-(3, 4-d)-imidazole derivative is formed instead of the expected iminodioxolane.

The reaction of CF_3NC with CF_3COOH offers an excellent method for preparing the hitherto unknown <u>N</u>-trifluoromethylformamide, which is unexpectedly stable compared to trifluoromethylamine.

$$CF_{3}NC \xrightarrow{CF_{3}COOH(excess)} CF_{3}-NH-CHO + (CF_{3}CO)_{2}O$$